Elucidation of the Structure-Activity Relationships of Apelin: Influence of Unnatural Amino Acids on Binding, Signaling and Plasma Stability

Alexandre Murza^{1,2}, Alexandre Parent², Elie Besserer-Offroy^{1,2}, Nicolas Beaudet², Philippe Sarret², Eric Marsault¹

¹Department of Pharmacology, ²Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada

eric.marsault@usherbrooke.ca

Introduction

Apelin is the endogenous ligand of APJ receptor, a member of the G protein-coupled receptor superfamily. There is currently little information on the structure/activity relationship (SAR) of apelin (**Scheme 1**). In an effort to better delineate SAR, we synthesized analogs of apelin-13 modified at selected positions with unnatural amino acids, with a particular emphasis on the C-terminal portion and Pro^{12} . Analogs were then tested in binding and functional assays by evaluating $G_{i/o}$ mediated reduction in cAMP levels and by assessing β -arrestin2 recruitment to the receptor. The plasma stability of new analogs was also assessed. Several were found to possess increased binding, biased β -arrestin2 signaling and higher stability compared to the parent peptide.

Results and Discussion

The C-terminal Phe¹³ of apelin-13 was replaced by unnatural amino acids (**R1**, **Table 1**). This set of modifications was performed on the Met11Nle analog which possesses a similar profile in terms of affinity, coupling to second messenger cascades, and stability to that of apelin-13 (IC₅₀ 5.7 nM ; EC_{50 cAMP} 1.9 nM ; EC_{50 β-arr2} 91 nM). Analogs Phe13Dip and Phe13Bip displayed a 10-fold difference in affinity suggesting that the C-terminal binding site is deep rather than wide. Interestingly, Phe13Cha exhibited an affinity comparable to that of apelin-13, indicating that hydrophobic interactions are necessary for binding, but aromatic, π -stacking type interactions are not essential. Phe13-1Nal and Phe13-2Nal showed an interesting trend in the β-arrestin2 pathway. Replacement of Pro¹² by Aib provided a very potent analog, and Pro12Aminoindane exhibited a biased signaling in β-arrestin2 pathway (**R2**, **Table 1**). Finally, C-terminally modified analogs showed significant improvements in plasma stability over apelin-13, whereas modification of Pro12 displayed more variable results (**Scheme 2**).

Table	1		R1				R2	
					\bigcap	F F F	н _г м Хсоон	Н_2N СООН
	Dip	Вір	1Nal	2Nal	Cha	(2,4,5- trifluoro)F	Aib	Aminoind ane
IC ₅₀ (nM)	88 ± 6	$\textbf{7.8} \pm \textbf{0.4}$	14 ± 0.9	1.2 ± 0.1	2.3 ± 0.6	0.8 ± 0.2	0.7 ± 0.1	20 ± 1
EC ₅₀ cAMP (nM)	ND	10 ± 3	28 ± 2	20 ± 6	20 ± 8	20 ± 9	30 ± 13	13 ± 4
EC ₅₀ β-			500 110	F O 11	170 ±	22 0	46 10	1204 ±

 70 ± 11

32

 32 ± 9

 46 ± 10

208

Scheme 2

arr2

(nM)

 630 ± 179

 361 ± 64

 522 ± 110

Acknowledgments

Financial support from the Université de Sherbrooke, the Institut de Pharmacologie de Sherbrooke (IPS) and the Centre des Neurosciences de Sherbrooke (CNS).

References

- Medhurst, A.D.; Jennings, C.A.; Robbins, M.J.; Davis, R.P.; Ellis, C.; Winborn, K.Y.; Lawrie, [1] K.W.; Hervieu, G.; Riley, G.; Bolaky, J.E.; Herrity, N.C.; Murdock, P.; Darker, J.G., J. Neurochem., 2003, 84, 1162-1172.
- [2] Vickers, C.; Hales, P.; Kaushik, V.; Dick, L.; Gavin, L.; Tang, J.; Godbout, K.; Parsons, E.; Baronas, E.; Hsieh, F.; Tummino, P., J. Biol. Chem., 2002, 277, 14838-14843.